I Motivation

= Vision and Language Navigation —an
autonomous agent navigating to a goal
location using visual inputs and provided
iNnstructions while navigating.

= Navigation without prior global maps

= Generalization to novel environments is a
challenge

= Current works enforce unrealistic assumptions
l.e. known topology, perfect localization and
deterministic navigation

IRobo—VLN Dataset

Introduce Robo-VLN- a richer VLN formulation
which is defined in continuous environments over
long horizon trajectories.

Robo-VLN provides longer horizon trajectories
(4.5x times average number of steps), more visual
frames and a balance high-level action distribution
compared to discrete VLN settings.

VLN

a. Continuous

turn right into the bedroom. Wait by the

Robo-VLN computes ground truth oracle feedback Moveforwardmroushthecomdo@
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I Overview

b. Visual

observations

First person
Visual Observations

obtains navigable instruction-trajectory pairs in | [CLS| [Tum | [Right - [Bedroom| [EOS |

continuous environments. The dataset is an
extension of VLN-CE/R2R.

Annotated instructions in the dataset does Not
describe goals
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I Architecture

= The Agent is comprised of a high-level po
policy. A layered decision making allows s
reasoning at different levels in the hierarc
each policy with a different reasoning abstraction level.
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Agent

= |ayered two-tiered decision making

= High-level policy performs cross modal
reasoning and produces sub-goal

= Low-level policy imitates the controller and
translates sub-goal to continuous actions
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I Experiments

We introduced a suit of flat baselines similar to
ones used in VLN-CE.

Seqguence to Sequence (Seg25eq). Encoder-
Decoder Architecture

Cross-Modal Attention (CMA): Aligning
INnstructions with images

Progress Monitor [1]: Adding auxiliary losses to
ald learning

Flattened hierarchical: Provide sub-goal
supervision to flat model|

[1] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan Al-Regib, Zsolt Kira, Richard Socher, and Caiming Xiong. Self-monitoring navigation agent via auxiliary

progress estimation.

I Results
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J Conclusi

We |ift the agent off the assumptions enforced
oy discrete action spaces and navigation graph
oased VLN formulation.

Provide a suit of baselines in Robo-VLN inspired
Oy recent state of the works in VLLN.

Show that hierarchical approach performs better
across all key standard metrics in Robo-VLN.




