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Fig. 1: Overview: Robotics Vision-and-Language Navigation (Robo-VLN) task in continuous environments and our proposed Hierarchical
Cross-Modal (HCM) agent. The agent decouples reasoning and imitation through a modularized training regime to solve the complex
long-horizon Robo-VLN task.

Abstract— Deep Learning has revolutionized our ability to
solve complex problems such as Vision-and-Language Navi-
gation (VLN). This task requires the agent to navigate to
a goal purely based on visual sensory inputs given natural
language instructions. However, prior works formulate the
problem as a navigation graph with a discrete action space.
In this work, we lift the agent off the navigation graph
and propose a more complex VLN setting in continuous 3D
reconstructed environments. Our proposed setting, Robo-VLN,
more closely mimics the challenges of real world navigation.
Robo-VLN tasks have longer trajectory lengths, continuous
action spaces, and challenges such as obstacles. We provide a
suite of baselines inspired by state-of-the-art works in discrete
VLN and show that they are less effective at this task. We
further propose that decomposing the task into specialized high-
and low-level policies can more effectively tackle this task. With
extensive experiments, we show that by using layered decision
making, modularized training, and decoupling reasoning and
imitation, our proposed Hierarchical Cross-Modal (HCM) agent
outperforms existing baselines in all key metrics and sets a new
benchmark for Robo-VLN.

I. INTRODUCTION

The promise of personal assistant robots that can seam-
lessly follow human instructions in real life environments has
long been sought after. Recent advancements in deep learning
(to extract meaningful information from raw sensor data)
and deep reinforcement learning (to learn effective decision-
making policies) have enabled some progress towards this
goal [1, 2, 3]. Due to the difficulty of collecting data in
these contexts, a great deal of work has been done using
photo-realistic simulations such as those captured through
Matterport3D panoramas in homes [4] or point-cloud meshes
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in Gibson [5]. For example, a number of works have in-
vestigated autonomous agents that can follow rich, natural-
language instructions in such simulations [6, 7, 8]. Precisely
defined, Vision-and-Language Navigation (VLN) is a task
which requires the agent to navigate to a goal location
purely based on visual inputs and provided instructions in
the absence of a prior global map [9].

While increasingly effective neural network architectures
have been developed for these tasks, many limitations still
exist that prevent their applicability to real-world robotics
problems. Specifically, previous works [4, 7, 8, 10, 11] have
focused on a simpler subset of this problem by defining
the instruction-guided robot trajectories as either a discrete
navigation graph [4, 9] or assuming the action space of
the autonomous agent comprises of discrete values [12, 13].
These formulations assume known topology, perfect local-
ization and deterministic navigation from one viewpoint to
the next in the absence of any obstacles [13]. Hence these
assumptions significantly deviate from the real world both in
terms of control and perception.

As a first contribution, we focus on a richer VLN for-
mulation which is defined in continuous environments over
long horizon trajectories. Our proposed setting, Robo-VLN
(Robotics Vision-and-Language Navigation), is summarized
in Figure 1 and Section III. We lift the agent off the
navigation graph, making the language guided navigation
problem richer, more challenging, and closer to the real
world.

In an attempt to solve the language-guided navigation
(VLN) problem, recent learning-based approaches [6, 16, 17]
make use of sequence-to-sequence architectures [18]. How-
ever, when tested for generalization performance in un-



TABLE I: Comparison between our proposed Robo-VLN setting and prior environments used for Vision-and-Language Navigation

—Simulation— —Environment— —Instructions—

Action space Granularity Agent Navigation Type Richness Generation

Touchdown [14], R2R [9] Discrete High Virtual Unconstrained Photo-realistic Complex Human-annotated
Follow-net [10] Discrete High Virtual Constrained Synthetic Simple Human-annotated

LANI [15] Discrete High Virtual Constrained Synthetic Simple Template based
VLN-CE [13] Discrete High Virtual Unconstrained Photo-realistic Complex Human-annotated

Robo-VLN (Ours) Continuous High/Low Robotics Unconstrained Photo-realistic Complex Human-annotated

seen environments, these approaches (initially developed for
shorter horizon nav-graph problems) translate poorly to more
complex settings [12, 13], as we also showed for Robo-VLN
in Section VI. Hence, for our proposed continuous VLN
setting over long-horizon trajectories, we present an approach
utilizing hierarchical decomposition. Our proposed method
leverages hierarchy to decouple cross-modal reasoning and
imitation, thus equipping the agent with the following key
abilities:

1. Decouple Reasoning and Imitation. The agent is
comprised of a high-level policy and a corresponding low-
level policy. The high-level policy is tasked with aligning the
relevant instructions with observed visual cues as well as rea-
soning over which instructions have been completed, hence
producing a sub-goal output through cross-modal grounding.
The low-level policy imitates the feedback controller based
on sub-goal information and observed visual states. A layered
decision making allows spatially different reasoning at dif-
ferent levels in the hierarchy, hence specializing each policy
with a dedicated reasoning abstraction level.

2. Modularized Training. Disentangling reasoning and
controls allows fragmenting a complex long horizon problem
into shorter time horizon problems. Since each policy is
tasked with fulfilling a dedicated goal, each module utilizes
separate end-to-end training with sparse communication be-
tween the hierarchy in terms of sub-goal information. In
summary, we make the following contributions:

• To the best of our knowledge, we present the first work
on formulating Vision-and-Language Navigation (VLN)
as a continuous control problem in photo-realistic sim-
ulations, hence lifting the agent of the assumptions en-
forced by navigation graphs and discrete action spaces.

• We formulate a novel hierarchical framework for Robo-
VLN, referred to as Hierarchical Cross-Modal Agent
(HCM) for effective attention between different input
modalities through a modularized training regime, hence
tackling a long-horizon and cross-modal task using
layered decision making.

• Provide a suite of baseline models in Robo-VLN in-
spired by recent state-of-the-art works in VLN and
present a comprehensive comparison against our pro-
posed hierarchical approach — Our work sets a new
strong benchmark performance for a long horizon com-
plex task, Robo-VLN, with over 13% improvement in
absolute success rate in unseen validation environments.

II. RELATED WORK

Vision-and-Language Navigation. Learning based nav-
igation has been explored in both synthetic [19, 20, 21]
and photo-realistic [4, 5, 22] environments. For a navi-
gation graph based formulation of the VLN problem (i.e.
discrete action space), previous works have utilized hy-
brid reinforcement learning [23], behavior cloning [24],
speaker-follower [25] and sequence to sequence based ap-
proaches [9]. Subsequent methods have focused on utilizing
auxiliary losses [16, 26], backtracking [6] and cross-modal
attention techniques [27, 28, 29] to improve the performance
of VLN agents. Our work, in contrast to discrete VLN
setting [9, 13] (see Table I), focuses on a much richer VLN
formulation, which is defined for continuous action spaces
over long-horizon trajectories. We study the new continuous
Robo-VLN setting and propose hierarchical cross-modal
attention and modularized training regime for such task.

Hierarchical Decomposition. Hierarchical structure is
most commonly utilized in the context of Reinforcement
Learning over long-time horizons to improve sample effi-
ciency [30, 31, 32]. Our work closely relates to the options
framework in Reinforcement Learning [24, 30, 33, 34]
where the top-level policy identifies high-level decisions to
be fulfilled by a bottom-level policy. In relation to other
works which utilize sub-task decomposition for behaviour
cloning [33, 35], we show that decomposing hierarchy based
on reasoning and imitation are quite effective for long-
horizon multi-modal tasks such as Robo-VLN.

III. ROBOTICS VISION-AND-LANGUAGE NAVIGATION
ENVIRONMENT (ROBO-VLN)

Different from existing VLN environments, we propose
a new continuous environment for VLN that more closely
mirrors the challenges of the real world, Robo-VLN —
a continuous control formulation for Vision-and-Language
Navigation. Compared to navigation graph based [9] and
discrete VLN settings [13], Robo-VLN provides longer hori-
zon trajectories (4.5x average number of steps), more visual
frames (∼3.5M visual frames), and a balanced high-level
action distribution (see Figure 2). Hence, making the problem
more challenging and closer to the real-world.

A. Problem Definition

Formally, consider an autonomous agent Ã in an unknown
environment Ẽ . The goal of a Robo-VLN agent is to learn
a policy at = π(xt, qt, θ) where the agent receives visual
observations (xt) from the environment Ẽ at each time-step
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Fig. 2: Robo-VLN compared with discrete VLN settings: VLN-
CE [13] and R2R [9]. We provide longer horizon trajectories (4.5x
average number of steps, over 3M visual frames, and a balanced
high-level action distribution.

(t) while following a provided instruction (q) to navigate
to a goal location G. θ denotes the learnable parameters
of the policy π. The action space of the agent consists of
continuous linear and angular velocity (vt, ωt) and a discrete
stop action (st). An episode (τ ) is considered successful if
agent’s distance to the goal is less than a threshold (da < 3m)
and the agent comes to a stop by either taking the stop
action (st) or decreasing its angular velocity below a certain
threshold.

B. Constructing Continuous VLN in 3D Reconstructions

To make the continuous VLN formulation possible in 3D
reconstructed environments, we port over human annotated
instructions (qt) corresponding to sparse way-points (zt)
along each instruction-trajectory pair in Room2Room (R2R)
dataset [9], using a continuous control formulation. We do
this in 2 stages as follows:

Ground-truth oracle feedback controller in 3D re-
constructed environments. We consider the robotic agent
to be a differential drive mobile robot, Locobot [36], with
a specified radius and height. We develop A? planner to
compute high-level oracle actions (aht ) along the shortest
path to the goal and use a feedback controller [37] to
convert the discrete R2R trajectories [9] into continuous
ones. The low-level oracle controller (ut) outputs velocity
commands (vt, ωt) given sparse way-points (zt) along a
given language-guided navigation trajectory from the R2R
dataset [4]. The converted continuous actions from the low-
level controller will then be used as ground-truth low-level
supervisions alt when training the navigation agents. We
create this continuous control formulation inside Matterport
3D environments [4] by considering the Locobot robot as a
3D mesh inside 3D reconstructed environments (see Figure
5). We use the robot’s dynamics [38] to predict next state
(x̂t+1) given current state (x̂t) and controller actions (alt).
Similar to Habitat [22], we render the mesh for any arbitrary
viewpoint by taking the position generated by the dynamic
model inside the 3D reconstruction.

Obtaining Navigable Instruction-Trajectory pairs.
Given a feedback controller of the form alt = ut(zt) and
high-level sparse viewpoints (zt = [z1, . . . , zN ] along the
language guided navigation trajectory inside a reconstructed

mesh, we search for the navigable space hnav(zt) using colli-
sion detection. We find navigable space for all the trajectories
present in the R2R dataset [9]. This procedure ensures the
transfer of only the navigable trajectories from R2R dataset
to the continuous control formulation in Robo-VLN; hence,
we eliminate non-navigable unrealistic paths for a mobile
robot, such as climbing up the stairs and moving through
obstacles. Through this approach, we transferred 71% of the
trajectories from the discrete VLN setting (VLN-CE [13])
while preserving all the environments in the Matterport3D
dataset [4]. At the end, Robo-VLN’s expert demonstration
provide first person RGB-D visual observations (it), hu-
man instructions (qt), and oracle actions (aht , a

l
t) for each

instruction-trajectory pair.

IV. HIERARCHICAL CROSS-MODAL AGENT

Learning an effective policy (π) for a long horizon contin-
uous control problem entails preserving the temporal states as
well as spatially reasoning about the surroundings. We there-
fore propose a hierarchical agent to tackle the Robo-VLN
task as it effectively disentangles different dedicated tasks
through layered decision making. Given states (X = {x})
and instructions (Q = {q}), our agent leverages these inputs
and learns a high-level policy (πhθ : X × Q → As,t) and a
corresponding low-level policy (πlγ : X ×As,t → Al,t). The
high-level policy consistently reasons about the alignment
between input textual and visual modalities to produce a
sub-goal output (As,t). The low-level policy ensures that
the high-level sub-goal is translated to low-level actions
(Al,t) effectively by imitating the expert controller through
an imitation learning policy. Our approach is summarized in
Figure 3 and subsequent sections.

A. High-Level Policy

The high-level policy (πhθ ) decides a short-term goal (aht )
based on the input instructions (qt) and observed visual
information xt = {rt, dt} from the environment at each time-
step, where rt, dt denote the RGB and Depth sensor readings
respectively. πhθ consists of an encoder-decoder architecture
with cross attention between the modules. Subsequent mod-
ules of the high-level policy (πhθ ) are described below.

Multi-Modal Cross Attention Encoder. Given a natural
language instruction comprised of k words, we denote its
feature representation as {q = q1t , q

2
t , . . . , q

k
t }, where qit is

the encoded feature representation of the ith word using
BERT embedding [39] to extract meaningful representation
of words in the sentence. To encode the observed RGB-D
states (rt ∈ Rho×wo×3, dt ∈ Rho×wo ), we generate a low-
resolution spatial feature representations fr ∈ RHs×Ws×Cs

and fd ∈ RHs×Ws×Cs by using a pre-trained ConvNet
backbone, where Hs = Ws = 7 and Cs = 2048. At each
time-step t, we combine the individual RGB (fr) and Depth
(fd) spatial features with encoded language representation
(qt) using a Transformer module [40]. Each Transformer
module is comprised of stacked multi-head attention block
(AM ) followed by a position-wise feed-forward block. We
utilize layer normalizations [41] between these blocks along
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Fig. 3: Hierarchical Cross-Modal Agent (HCM): Our proposed agent consists of a high-level module and a corresponding low-level
module. High-level module predicts the sub-goal output based on alignment between instructions and visual observations. Low-level
module translates the high-level sub-goal output to linear and angular velocities using an imitation learning policy.

with the residual connection from the previous block such
that output of each individual block is LayerNorm(z +
module(z )). Each Transformer block is computed as follows:

AM (Q,K,V ) = concat(h1, . . . , hk )W h,

where hi = A
(
QWQ

i ,KWK
i ,VW

V
i

)
A(Q,K,V ) = softmax

(
QKT

√
dk

)
V

(1)

The Attention output (A) is a weighted sum of the values
(V ) calculated using a similarity between projected Query
(Q) and Key (K). AM represents stacked Attention blocks
(A), and WQ

i ,W
K
i ,W

V
i and Wh are parameters to be learnt.

We utilize Equation 1 to perform cross attention between
visual spatial representation (RGB fr or Depth fd) and
language features (qt) successively. We do this by utilising
the sum of language features and sinusoidal Positional En-
coding (PE [40]) as query (Q = qt + PE(qt)) and visual
representation as Key (Kr = fr or Kd = fd) as well as
Value (Vr = fr or Vd = fd). The final outputs, which we
denote as cross-attended context (from RGB or Depth), are
computed using AM (Q,K,V ), e.g., Î

att

q for RGB input and

d̂
att

q for Depth input.
These cross-attended contexts represent the matching be-

tween instructions and corresponding visual features at each
time step t. Note that the learnable weights in the Trans-
former are not shared between the two modalities.

Multi-Modal Attention Decoder. To decide on which
direction to go next and select the most optimal high-level
action (aht ) high-level policy preserves a temporal memory
of the attended visual-linguistic contexts (Î

att

q , d̂
att

q ), mean-
pooled visual features (v̂t) and previous actions (aht−1). We
rely on a Recurrent Neural Network to preserve this temporal
information across time.

hht = LSTM
([

Î
att

q , d̂
att

q , v̂t, at−1,h
h
t−1

])
v̂t = W i(g([fr,fd])

> + bi)
(2)

where g(.) is mean adaptive pooling across the spatial
dimensions. Wi and bi are learned parameters of a fully-
connected layer.

The agent computes a probability (pha) of selecting the
most optimal action (at) at each time-step by employing a
feed-forward network followed by a softmax as follows:

pha = softmax(W a([h
h
t ] + ba)) (3)

where Wa and ba are parameters to be learnt. High-level
action at comprises of the following navigable directions:
move forward (0.25m), turn-left or turn-right
(15 degrees) and stop.

B. Low-level Policy

We employ an imitation policy for the low-level module.
At each time-step t, the low-level policy (πlφ) selects a low-
level action (alt)) given the sub-goal (aht ), generated by the
high-level policy and observed visual states (rt, dt) from
the environment. Low-level actions are comprised of agent’s
linear and angular velocity (vt, ωt). Similar to the high-level
module, we use mean pooled visual features (v̂t) for the low-
level policy and additionally condition the policy on the high-
level sub-goal (aht ). Furthermore, we utilize stacked LSTM
layers with respective fully-connected layers to generate both
low-level action and stop probabilities (pla, p

s
a):

hlt = LSTM
([

v̂t,a
h
t ,h

l
t−1

])
(4)

pha = tanh(ga([h
l
t,a

l
t−1])), psa = σ(gs([h

l
t,a

l
t−1])) (5)

where ga(.) and gs(.) are one-layer Multi-Layer Perceptrons
(MLP). σ and tanh are sigmoid and tanh activation functions
respectively.

C. Training Details

We train both high- and low-level policies jointly with
three different losses. We employ a multi-class cross-entropy
loss computed between ground-truth high-level navigable
action (yat ) and the predicted action probability (pha) for



TABLE II: Quantitative comparison: Comparison with strong baselines. Note that these baselines are reimplementations from VLN-
CE [13] with small changes (see Section VI for further details).

Validation Seen Validation Unseen
Method SR ↑ SPL ↑ NDTW ↑ TL ↑ NE ↓ SR ↑ SPL ↑ NDTW ↑ TL ↑ NE ↓

1 Random Agent 0.07 0.07 0.14 5.26 10.25 0.08 0.08 0.14 5.40 9.81
2 Seq2Seq [4] 0.36 0.34 0.32 11.84 8.63 0.33 0.30 0.28 11.92 8.97
3 PM [16] 0.32 0.27 0.23 14.12 9.33 0.28 0.24 0.22 13.85 9.82
4 CMA [17] 0.28 0.25 0.22 11.52 9.95 0.28 0.25 0.23 11.57 9.63

HCM (Ours) 0.49 0.43 0.35 13.53 7.48 0.46 0.40 0.35 14.06 7.94

TABLE III: Ablation Study: Impact of different modules and design choices in our proposed Hierarchical agent.

Module Validation Seen Validation Unseen

# Vision Hierarchy
RGB-D

Early fusion
SR ↑ SPL ↑ NDTW ↑ TL ↑ NE ↓↑ SR ↑ SPL NDTW ↑ TL ↑ NE ↓

Hierarchical
Agent

1 X 0.07 0.07 0.14 4.82 10.34 0.07 0.07 0.14 10.2 4.81
2 X 0.44 0.37 0.31 14.87 8.21 0.40 0.34 0.28 15.32 8.64
3 X X X 0.39 0.35 0.29 13.87 9.13 0.34 0.31 0.28 12.85 8.78
4 X X 0.49 0.43 0.35 13.53 7.48 0.46 0.40 0.35 14.06 7.94

the high-level policy. We employ a mean squared error
loss between ground-truth velocity commands (yv,ωt ) and
predicted low-level action probabilities (pla). Lastly, we use
a binary cross-entropy loss between ground-truth stopping
actions (yst ) and predicted stop probabilities (psa) as follows:

Lloss = λ

High-Level Action Loss︷ ︸︸ ︷
T∑
t=1

yat log (p
a
h) +(1− λ)(

Low-Level Action Loss︷ ︸︸ ︷
T∑
t=1

(
yv,ωt − pla

)2

+

Low-Level Stop Loss︷ ︸︸ ︷
T∑
t=1

yst log (p
s
a) )

V. DATASET AND IMPLEMENTATIONS

Simulation and Dataset. We use Habitat simulator [22]
to perform our experiments. Our dataset, Robo-VLN, is built
upon Matterport3D dataset [4], which is a collection of 90
environments captured through around 10k high-definition
RGB-D panoramas. Robo-VLN provides 3177 trajectories,
and each trajectory is associated with 3 instructions annotated
by humans ported over from the R2R Dataset [9]. Overall,
the dataset comprises 9533 expert instruction-trajectory pairs
with an average trajectory length of 326 steps compared to
55.8 in VLN-CE [13] and 5 in R2R [9]. The corresponding
dataset is divided into train, validation seen and validation
unseen splits.

Evaluation Metrics. We evaluate our experiments on the
following key standard metrics described by Anderson et
al. [42] and Gabriel et al. [43]: Success rate (SR), Success
weighted by path length (SPL), Normalized Dynamic Time
Warping (NDTW), Trajectory Length (TL) and Navigation
Error (NE). We use SPL and NDTW as the primary metrics
for comparison. Both of these metrics measure the deviation

from ground-truth trajectories; SPL places more emphasis on
reaching the goal location, whereas NDTW emphasises on
following the complete ground-truth path.

Implementation Details. We use pre-trained ResNet-50
on ImageNet [44] and pre-trained ConvNet on a large scale
point-goal navigation task, DDPPO [45] to extract spatial
features for images and depth modalities successively. For
transformer module, we use a hidden size (H = 256),
number of Transformer heads (nh = 4), and the size of
feed-forward layer (FF = 1024). We found that truncated
backpropagation through time [46] was invaluable to train
longer sequence recurrent networks in our case. We used a
truncation length of 100 to train attention decoders in both
policies. We trained the network for 20 epochs and performed
early stopping based on the performance of the model on
validation seen dataset.

VI. EXPERIMENTS & RESULTS

Flat Baselines. We introduce a suite of flat1 baselines that
are similar to the ones used in VLN-CE [13]: (1) Sequence-
to-Sequence (Seq2Seq): an encoder-decoder architecture
trained using teacher-forcing [9], (2) Progress Monitor

1Flat as in there is no explicit hierarchical design for agent’s decision
making of high- or low-level actions.
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Fig. 4: Comparison with strong flat baselines: Our proposed
hierarchical method in comparison with strong flat baselines evalu-
ated on the validation unseen dataset. Our approach shows superior
performance and better generalization in unseen settings.
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Fig. 5: Qualitative Comparison: Inference performance of hierarchical and flat model in unseen environments within Robo-VLN. The
hierarchical model successfully predicts low-level velocity commands to reach a goal location whereas flat model bumps into obstacles.

(PM): an agent based on the Seq2Seq model but with an
auxiliary loss for progress monitoring, conceptually similar
to [16], and (3) Cross-Modal Attention (CMA): an cross-
modality attention based agent that is conceptually similar
to RCM [17]. We adapt these baselines into our Robo-VLN
task but with a single change: the output layers now predicts
linear and angular velocities as well as the stop action, as
opposed to the four actions (forward, turn-left, turn-right,
and stop) used in VLN-CE. Note that baselines are without
DAgger [47] and data augmentation from [48].

Comparison with Flat Baselines. The results of our
proposed HCM against baselines are summarized in Table II.
As shown in Table II and Figure 4, our proposed approach,
which uses a hierarchical structure to tackle the long-horizon
Robo-VLN problem, consistently outperforms the strong
baseline models. Specifically, our HCM agent shows superior
validation unseen performance by achieving a 40% SPL and
46% SR; hence demonstrating an absolute 13% improvement
in SR and 10% improvement in SPL over the best performing
baseline on the validation unseen environments.

Ablation Study. In our ablation experiments, we empir-
ically validate the significance of different design choices
and modules in our proposed HCM agent. Our results are
summarized in Table III. First, we ablate vision (RGB and
Depth) in our model. Our results show that an agent without
vision performs as good as a random agent (i.e., 0.07 SPL,
0.07SR). It shows the effectiveness of vision for end-to-
end trainable agents in photo-realistic simulations. Second,
we consider an architecture with early RGB and Depth
fusion before cross attention with language. Our results show
that separately aligning RGB and Depth with instructions
performs much better than attending to the instructions
corresponding to a fused RGB-D representation. We further
ablate hierarchy to show the importance of hierarchy in our
architecture. Our results are summarized as follows.

Is the source of improvement from hierarchy? Our
method relies on decomposing the complex task into layered
decision making; the top level predicts a sub-goal whereas
the bottom level predicts low-level velocity commands. To
confirm that hierarchy is indeed the source of improvement,

we devise an experiment, in which we flattened the hier-
archical model and provide auxiliary sub-goal supervision
to the flattened model in addition to the low-level supervi-
sions. This model effectively reduced to Seq2Seq baseline
model but with high-level action supervision. The results
are reported in Table III (#2 vs #4). We show that, despite
using same levels of supervisions, the flattened hierarchical
model under-performs the hierarchical approach, e.g., 40%
vs 46% in SR and 34% vs 40% in SPL. This comparison
demonstrates that decoupling reasoning and imitation indeed
plays a pivotal role in learning effective individual policies.

Qualitative Comparison. We qualitatively analyze the
performance of hierarchical and flat agents in Robo-VLN.
As shown in Figure 5, the hierarchical agent (top example)
successfully predicts low-level velocity commands while
reaching a desired goal location described by the instruction.
The agent takes significantly more steps than discrete VLN
settings (511 steps) to reach the goal location; hence showing
the effectiveness of hierarchical agents to solve long horizon
cross-modal trajectory following problem. The flat agent
(bottom figure) fails to follow the trajectory and drives into
obstacles multiple times. The episode ends after the agent is
unsuccessful in reaching the goal at 1000 steps.

VII. CONCLUSION

Despite the recent progress, existing VLN environments
impose certain unrealistic assumptions such as perfect local-
ization, known topology and deterministic navigation in the
absence of any obstacles. In this work, we first propose the
Robo-VLN setting that lifts off the unrealistic assumption
of navigation graph and discrete action space and provides
a suite of strong baselines inspired by the recent works in
discrete VLN setting. We then take the next step to propose a
Hierarchical Cross-Modal (HCM) agent that tackles the chal-
lenging long-horizon issue in Robo-VLN via a hierarchical
model design. Our proposed HCM agent, with trained high-
and low-level policies, achieves significant performance im-
provement against the strong baselines. We believe that our
new Robo-VLN setting and strong benchmarks would help
build a stronger suite of autonomous agents.
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